Effect of left-ventricular aneurysm on human ventricular mechanics: A patient-specific simulation model study

By
Arnab Palit
Dr. Sunil K. Bhudia
Prof. Theodoros N. Arvanitis
Prof. Mark A. William

1 WMG, The University of Warwick, Coventry, UK
2 University Hospitals Coventry and Warwickshire, Coventry, UK
3 Institute of Digital Healthcare, WMG, The University of Warwick, Coventry, UK
Content

• Introduction
• Research Objectives
• Materials and Methods
• Results and Discussions
• Summary
Introduction
Facts about Heart Failure (HF)

• UK’s biggest killer - affects at least one in every 100 \([1,2]\)
• Cost to NHS - £625 million per year \([1]\)
• Within the year of admission for HF, 32% of patients died \([2]\)
• LV dysfunction associated with myocardial infarction has a significantly worse 3-years survival in patients \([3]\)

Normal vs Aneurysm

- **Myocardial infarction** could lead to **LV aneurysm** & consequently **heart failure** (HF)

- Surgical Ventricular Restoration (**SVR**) – still not effective

Why Simulation

- Non-invasive procedure

- Measuring myocardium stress in-vivo still not possible

- Can investigate and examine the effects of various factors on ventricular mechanism which are technologically and ethically complex to perform on real patient

- Can lead to patient-specific treatment plan
Research Objectives
• To identify and investigate on patient-specific diastolic mechanics of normal left ventricle

• To identify and examine on patient-specific systolic mechanics of normal left ventricle

• To identify the changes in mechanical characteristics between normal LV and LV with an aneurysm in diastole and systole
Materials and Methods
Finite Element Analysis (FEA)

Input
1. Mesh Geometry
2. Boundary Condition
3. Load
4. Material Property

Output
1. Displacement
2. Pressure/volume
3. Stress/strain
3D Mesh geometry construction

1. Short Axis Image
2. Preliminary 3D Geometry
3. Long Axis Image
4. Create basal-atrium intersection plane
5. Remove extra volume by cutting preliminary 3D geometry in basal-atrium intersection plane
6. Final 3D biventricular geometry
Normal vs Aneurysm
Fibre-sheet structure

Myocardial fibre angle varies from $+50^\circ$ to $+70^\circ$ in the sub-endocardial to almost 0° in the mid-wall to -50° to -70° at sub-epicardial with respect to the local circumferential direction.

Implement Fibre-sheet structure on mesh

Geometry:

- \((f, s, n)\) : fibre, sheet, fibre-sheet normal
- \((e_z, e_c, e_n)\) : local longitudinal, circumferential and radial directions
- \(\alpha\) : helix or fibre angle
- \(\beta\) : sheet angle
Myocardium Material

- Hyperelastic
- Orthotropic

<table>
<thead>
<tr>
<th>a (KPa)</th>
<th>b (KPa)</th>
<th>a_f (KPa)</th>
<th>b_f (KPa)</th>
<th>a_s (KPa)</th>
<th>b_s (KPa)</th>
<th>a_fs (KPa)</th>
<th>b_fs (KPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Istotrop</td>
<td>ground matrix</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fibre</td>
<td>behaviour</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sheet</td>
<td>behaviour</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>shear</td>
<td>behaviour</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Results and Discussion
Validation
Effect of fibre orientation on pressure – volume relation during diastole
Effect of fibre orientation on fibre stress during diastole
Effect of material parameters on pressure-volume relation

- Parameter b has major influence on LV inflation
- Reducing last six parameter's value (from Human) would not increase the LV inflation at EDP
- The PV relation mainly depends on (b/a) value

<table>
<thead>
<tr>
<th></th>
<th>Isotropic ground matrix</th>
<th>Fibre behaviour</th>
<th>Sheet behaviour</th>
<th>shear behaviour</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a (KPa)</td>
<td>b</td>
<td>a_f (KPa)</td>
<td>b_f (KPa)</td>
</tr>
<tr>
<td>Pig</td>
<td>0.236</td>
<td>10.81</td>
<td>20.037</td>
<td>14.154</td>
</tr>
<tr>
<td>Human</td>
<td>0.070</td>
<td>6.000</td>
<td>2.257</td>
<td>2.072</td>
</tr>
</tbody>
</table>
Effect of RV topology on LV volume in diastole
Effect of RV topology on LV fibre stress-strain

LV (a) BV

Base Equatorial Apex s-l α-p
Future work

• Diastolic simulations of 5 normal hearts to provide a reference map for ventricular wall stress
• Systolic simulations of 5 normal hearts to provide a reference map for ventricular wall stress
• Simulation of LV with aneurysm and investigate its effect on LV mechanics
Summary

- Research Objectives
- Simulation Methods
- Effect of different factors on LV diastole

- Potential Benefits
 - Improved understanding of the physiology and pathophysiology of human heart in normal and diseased condition
 - These understating will eventually lead to better treatment and patient-specific optimal surgery